Navigating in a Tropical Storm

2/M John R. Jaromahum

Northern Hemisphere

- Left or less dangerous semicircle:
- Bring the wind on the starboard quarter (135° relative), hold course and make as much way as possible. If necessary, heave to with stern to the sea.

Northern Hemisphere

- Right or dangerous semicircle:
- Bring the wind on the starboard bow (045° relative), hold course and make as much way as possible. If necessary, heave to with head to the sea.

Northern Hemisphere

- On storm track, ahead of center:
- Bring the wind 2 points on the starboard quarter (about 160° relative), hold course and make as much way as possible. When well within the less dangerous semicircle, maneuver as indicated above.

Northern Hemisphere

- On storm track, behind center:
- Avoid the center by the best practicable course, keeping in mind the tendency of tropical cyclones to curve northward and eastward.

Southern Hemisphere

- Left or dangerous semicircle:
- Bring the wind on the port bow (315° relative), hold course and make as much way as possible. If necessary, heave to with head to the sea.

Southern Hemisphere

- Right or less dangerous semicircle:
- Bring the wind on the port quarter (225° relative), hold course and make as much way as possible. If necessary, heave to with stern to the sea.

Southern Hemisphere

- On storm track, ahead of center:
- Bring the wind about 200° relative, hold course and make as much way as possible. When well within the less dangerous semicircle, maneuver as indicated above.

Southern Hemisphere

- On storm track, behind center:
- Avoid the center by the best practicable course, keeping in mind the tendency of tropical cyclones to curve southward and eastward. It is possible, particularly in temperate latitudes after the storm has recurved, that the dangerous semicircle is the left one in the Northern Hemisphere (right one in the Southern Hemisphere).
This can occur if a large high lies north of the storm and causes a tightening of the pressure gradient in the region.

